DESIGNING OF SEWER PIPELINE AT ALTERNATE ROUTE AND DEVELOPING AND TRANSFERRING TECHNICAL DATA WITH AUTOMATION IN AUTOCAD FROM MS EXCEL

¹Ms Divya Agarwal, ²Ms Jyoti Singh
¹ P.G Student, ²Assistant Professor
¹Department of Civil Engineering
¹Noida International University, Noida, India

Abstract: There are many optimization ways to design the sewerage system by selecting from the several different commercial pipe sizes available as options for each sewer pipe stage, which are determined by a detailed hydraulic analysis, the goal of which is to meet the design criteria at a minimal cost .But there are no automation for checking the designing of sewerage pipeline through alternate routes and automatically creating the drawing of the same. This study has been undertaken to investigate how we can automatically design the sewer pipeline through different route by linking the AutoCAD in MS Excel and developing the drawing of the sewer pipeline from MS Excel to AutoCAD.

IndexTerms – Hydraulic Design of sewer pipeline through different routes, automation of developing drawing from M S Excel to AutoCAD.

I. INTRODUCTION

A sewer system generally takes advantage of gravity to collect and transport sewage from house to treatment plant, through a network of hydraulically designed pipes which include household connection pipes, as well as secondary and trunk sewer pipes. The sewer pipe-network, the manholes, the pumping stations and other related appurtenances are all connected. Once the layout of a sewer network is determined, there are many optimal hydraulic design program is to select the size and the slope of the sewer pipes that best meet the design criteria and regulatory standards, at a minimal cost. If we want to change the layout of a sewer pipe network then it will be tedious task to redesign the sewer pipeline but if we link the AutoCAD with the design then just by few changes in the design we can do this task in few seconds. Developing the drawing and filling the details of sewer pipeline is again a lengthy work but if we link the design of Sewer pipeline with AutoCAD we can also generate the drawing and fill all the necessary details from MS Excel to AutoCAD.

II. GENERAL DETAILS ABOUT THE HYDRAULIC DESIGN OF SEWER AND AUTOMATION WITH AUTOCAD.

For the hydraulic design of the sewer pipe, Manning's equation is used, which is given as

V = (1/n) R2/3 S 1/2

Where,

V = Design velocity in m/s

n = Manning's roughness coefficient

- $\mathbf{R} = \mathbf{H}\mathbf{y}\mathbf{d}\mathbf{r}\mathbf{a}\mathbf{u}\mathbf{l}\mathbf{i}\mathbf{c}$ radius in m
- S = Hydraulic slope

AutoCAD is a commercial computer-aided design (CAD) and drafting software application .It is based on coordinate system. GIS image are also based on the coordinate system so by matching the coordinate of GIS and AutoCAD we can easily locate the exact position of pipeline on ground. If we have two coordinate points at different locations we can easily calculate the length between the two coordinate points. For Example: -1, 2 and 2, 3 are two coordinate points, the length between the two points will be $\sqrt{(2-1)^2 - (3-2)^2} = 1.414$ m. If we just get the coordinate of two points we can calculate the length of the two points. The hydraulic design process of sewer pipeline starts by numbering of the nodes. Along with the numbering of nodes we will capture all coordinate of the nodes .Now, we can easily calculate the length of pipeline between two nodes with the help of coordinate. Next step is the assignment of flows based on population at different nodes. Next step is to select a set of feasible diameters out of the set of specified commercially available diameter for each pipe subject to the condition that the velocity requirement and slope requirement are satisfied (maximum and minimum slopes). This begins with the maximum permissible ratio of depth of flow in pipe (d) to the diameter of pipe (D), calculation of actual pipes slopes and their elevations, determination of velocities and depths of flows the line, checking of the minimum cover depth. The result includes the peak flows, water depths, pipe slopes for each line. Also the U/S and D/S ground elevations, invert elevations/levels calculated and accordingly excavation depth for each line is calculated. In respect of nodes the total excavation depth and the difference in elevation of the highest invert entering the node and that of leaving the node is calculated.

III. DESIGNING OF SEWERAGE PIPELINE THROUGH ALTERNATE ROUTES BY AUTOMATION

Start node with coordinates of AutoCAD and Stop Node with coordinates of AutoCAD helps a lot in designing the alternate routes of sewer pipeline. If we change the Start node and Stop node in the program of MS Excel, then with the help of coordinate we can easily redesign the whole system easily and we can also compare the best feasible route among all the available routes.

IV. AUTOMATION OF DEVELOPING DRAWING AND TRANSFERRING ALL THE DATA FROM MS EXCEL TO AUTOCAD

AutoCAD has coordinate system. As we have all the coordinate of all the start node and stop node. A pipeline is proposed between start nodes and stop node so with the syntax pline x_1 , $y_1 x_2$, y_2 we can easily draw a pipeline between two nodes. Start node details existing ground level, invert level should be written at start node i.e. at co-ordinate of start node x_1 , y_1 .Length, Diameter and slope of pipe should be written at center of line i.e. middle of the line $(x_1+x_2)/2$, $(y_1+y_2)/2$.Stop Invert level should be at stop node i.e. at x_2 , y_2 .

Program for inserting text at given coordinate (defun c:dotext () (setq InsPt (getstring "Insert coords: ")) (setq InsRT (getstring "Insert ROTATION: ")) (setq tstuff (getstring T "Text:")) (command "text" InsPt "" InsRT tstuff);;edit for text height & rotation (princ)

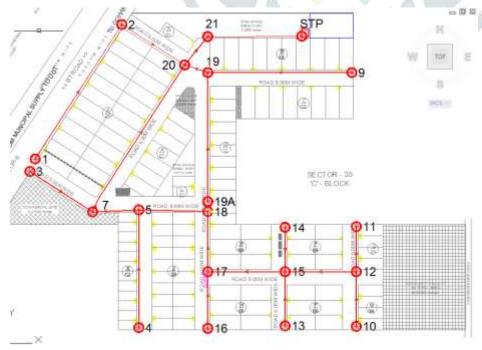
With the help of this simple program we can easily insert the data from MS Excel to AutoCAD and develop the drawing.

V. SAMPLE EXAMPLE

Example: designing of sewerage pipeline through alternate routes by automation of AutoCAD from MS Excel First of all, we mark the entire pipeline on the AutoCAD and capture all the coordinate of nodes in MS Excel as shown below:-

Figure 1Start node and stop node of one route of sewer pipeline

Table 1Co-ordinate of all the nodes in MS Excel


With the help of these coordinate, length of the pipeline will be calculated and sewer network will be design in MS Excel program as soon below:

	HYDRAULIC STATEMENT OF SEWERAGE SCHEME															
			e	Эe			W	w T)f	Ground Level		Invert level		Depth of	
			arg	Pij	ipe	[lu]	flo	s/v	(1	s/L	(m)		(m)		Manho	le (m)
From node	To node	length	Peak Discharge (Qs)	Diameter of Pipe	Slope of pipe	Discharge full flow (Qf)	Velocity full flow (Vf)	Corresponding Vs/Vf	Actual Velocity (Vs)	Corresponding Ds/Df	Upper Node	Lower node	Upper Node	Lower node	Upper Node	Lower node
			Cum/	m	1in	Cum	m/	Or	m /	Or						
		m	sec	m	••••	/sec	sec		sec		m	m	m	m	m	m
1	2	91	0.001	200	50	0.05	1.7	0.4	0.6	0.1	99.7	99.9	98.8	97.0	0.9	2.9
2	20	43	0.001	200	50	0.05	1.7	0.4	0.6	0.1	99.9	100.0	97.0	96.1	2.9	3.8
3	7	43	0.000	200	50	0.05	1.7	0.3	0.6	0.1	99.9	100.0	99.0	98.1	0.9	1.9
4	5	67	0.001	200	50	0.05	1.7	0.4	0.7	0.1	100.2	100.1	99.3	98.0	0.9	2.1
5	7	26	0.001	200	50	0.05	1.7	0.4	0.7	0.1	100.1	100.0	98.0	97.4	2.1	2.6
7	20	99	0.001	200	50	0.05	1.7	0.4	0.7	0.1	100.0	100.0	97.4	95.4	2.6	4.5
9	19	82	0.001	200	50	0.05	1.7	0.4	0.7	0.1	100.1	100.0	99.2	97.6	0.9	2.4
10	12	31	0.000	200	50	0.05	1.7	0.4	0.6	0.1	100.3	100.3	99.4	98.8	0.9	1.5
11	12	26	0.000	200	50	0.05	1.7	0.4	0.6	0.1	100.3	100.3	99.4	98.9	0.9	1.4
12	15	41	0.001	200	50	0.05	1.7	0.4	0.7	0.1	100.3	100.2	98.8	98.0	1.5	2.2
13	15	31	0.000	200	50	0.05	1.7	0.4	0.6	0.1	100.3	100.2	99.0	98.4	1.3	1.8
14	15	25	0.000	200	50	0.05	1.7	0.4	0.6	0.1	100.3	100.2	99.4	98.8	0.9	1.4
15	17	44	0.001	200	50	0.05	1.7	0.4	0.7	0.1	100.2	100.2	98.0	97.1	2.2	3.1
16	17	32	0.000	200	50	0.05	1.7	0.4	0.6	0.1	100.2	100.2	99.3	98.7	0.9	1.5
17	18	34	0.002	200	100	0.04	1.2	0.5	0.6	0.2	100.2	100.1	97.1	96.7	3.1	3.4
18	19A	6	0.003	200	100	0.04	1.2	0.6	0.7	0.2	100.1	100.0	96.7	96.7	3.4	3.3
19A	19	74	0.003	200	100	0.04	1.2	0.6	0.8	0.2	100.0	100.0	96.7	95.9	3.3	4.1
19	20	14	0.004	200	100	0.04	1.2	0.6	0.9	0.2	100.0	100.0	95.9	95.8	4.1	4.1
20	21	21	0.006	200	100	0.04	1.2	0.7	0.9	0.3	100.0	100.0	95.4	95.2	4.5	4.8
21	STP	54	0.006	200	100	0.04	1.2	0.7	0.7	0.3	100.0	100.0	95.2	94.7	4.8	5.3

Table 2 HYDRAULIC STATEMENT OF SEWERAGE SCHEME OF ONE ROUTE

This is one route of sewer pipeline which we have proposed .Now we want to change the previous start node of 18 to stop 19A to start node 18 to stop node 5 then just changing the start node and stop node in MS Excel rest all the details will change automatically and redesign of sewer new network will be done.

Figure 2Start node and stop node of another route of sewer pipeline

TABLE 3 HYDRAULIC STATEMENT OF SEWERAGE SCHEME OF SECOND ROUTE

	HYDRAULIC STATEMENT OF SEWERAGE SCHEME															
le	e	length	Peak Discharge (Qs)	of	oipe	Discharge for full flow (Qf)	for full (Vf)	Corresponding Vs/Vf	(Vs)	Ds/Df	Ground (n	l Level	invert (n	n)	Mar (r	th of 1hole n)
Start node	Stop node	len	Peak Di ((Diameter Pipe	Slope	Discha full flo	Velocity flow	ponding	Actual Velocity m/sec	Corresponding	Start Node	Stop node	Start Nod e	Stop nod e	Stop nod e	Start Nod e
S	Š				1in	Cu	,	rres	tual	rres]					-	
			Cum/	m		m /	m/s	C01	Act	Col						
1	2	m	Sec	m		Sec	ec	_	0.6		<u>m</u>	m	m	m	m	<u>m</u>
1	2	91	0.001	200	50	0.05	1.7	0.4	0.6	0.1	99.7	99.9	98.8	97.0	0.9	2.9
2	20	43	0.001	200	50	0.05	1.7	0.4	0.6	0.1	99.9	100.0	97.0	96.1	2.9	3.8
3	7	43	0.000	200	50	0.05	1.7	0.3	0.6	0.1	99.9	100.0	99.0	98.1	0.9	1.9
4	5	67	0.001	200	50	0.05	1.7	0.4	0.7	0.1	100.2	100.1	99.3	98.0	0.9	2.1
5	7	26	0.004	200	50	0.05	1.7	0.6	1.0	0.2	100.1	100.0	96.3	95.8	3.8	4.2
7	20	99	0.004	200	50	0.05	1.7	0.6	1.0	0.2	100.0	100.0	95.8	93.8	4.2	6.1
9	19	82	0.001	200	50	0.05	1.7	0.4	0.7	0.1	100.1	100.0	99.2	97.6	0.9	2.4
10	12	31	0.000	200	50	0.05	1.7	0.4	0.6	0.1	100.3	100.3	99.4	98.8	0.9	1.5
11	12	26	0.000	200	50	0.05	1.7	0.4	0.6	0.1	100.3	100.3	99.4	98.9	0.9	1.4
12	15	41	0.001	200	50	0.05	1.7	0.4	0.7	0.1	100.3	100.2	98.8	98.0	1.5	2.2
13	15	31	0.000	200	50	0.05	1.7	0.4	0.6	0.1	100.3	100.2	99.0	98.4	1.3	1.8
14	15	25	0.000	200	50	0.05	1.7	0.4	0.6	0.1	100.3	100.2	99.4	98.8	0.9	1.4
15	17	44	0.001	200	50	0.05	1.7	0.4	0.7	0.1	100.2	100.2	98.0	97.1	2.2	3.1
16	17	32	0.000	200	50	0.05	1.7	0.4	0.6	0.1	100.2	100.2	99.3	98.7	0.9	1.5
17	18	34	0.002	200	100	0.04	1.2	0.5	0.6	0.2	100.2	100.1	97.1	96.7	3.1	3.4
18	5	39	0.003	200	100	0.04	1.2	0.6	0.7	0.2	100.1	100.1	96.7	96.3	3.4	3.8
19A	19	74	0.000	200	100	0.04	1.2	0.0	0.5	0.0	100.0	100.0	99.1	98.4	0.9	1.6
19	20	14	0.001	200	100	0.04	1.2	0.4	0.9	0.1	100.0	100.0	97.6	97.4	2.4	2.5
20	21	21	0.006	200	100	0.04	1.2	0.7	0.9	0.3	100.0	100.0	93.8	93.6	6.1	6.4
21	STP	54	0.006	200	100	0.04	1.2	0.7	0.0	0.3	100.0	100.0	93.6	93.1 ·	6.4	6.9

We can easily compare the two designs that the first route will be more economical as the depth of pipeline is more in second route of sewer pipeline.

Example: developing AutoCAD drawing and transferring design detail from MS Excel to AutoCAD.

As shown in above example we have all the coordinates in MS Excel and we are transferring data of first route in auto cad and developing drawing automatically.

					The second second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Start		Stop		X ₁ (Start	Y ₁ (Stop	X ₂ (Start	Y ₂ (Stop
Node		Node		Node)	Node)	Node)	Node)
	1		2	-27.463	97.725	21.961	174.532
	2		20	21.961	174.532	57.842	151.439
	3		7	-30.495	90.561	5.33	67.504
	4		5	31.674	1.358	31.674	68.663
	5		7	31.674	68.663	5.33	67.504
	7		20	5.33	67.504	57.842	151.439
	9		19	153.162	147.095	71.004	147.095
1	10		12	155.683	2.063	155.683	33.34
1	11		12	155.683	59.077	155.683	33.34
1	12		15	155.683	33.34	115.064	33.34
1	13		15	115.064	2.335	115.064	33.34
1	14		15	115.064	58.664	115.064	33.34
1	15		17	115.064	33.34	71.004	33.34
1	16		17	71.004	0.952	71.004	33.34
1	17		18	71.004	33.34	71.004	67.704
]	18	19A		71.004	67.704	71.004	73.378
]	19		20	71.004	147.095	57.842	151.439
4	20		21	57.842	151.439	70.924	167.635
4	21	STP		70.924	167.635	124.629	167.86
19A			19	71.004	73.378	71.004	147.095

TABLE 4 START AND STOP NODE WITH COORDINATE

Table 5 Command for transferring data of first route in auto cad and developing drawing automatically

Start	Stop	For creating	For	for transferring	for transferring	for transferring	
Nod	Nod	pipeline	transferring	ground level	start invert level	length diameter and	for transferring
e	e		node number	0		slope	stop invert level
		PLINE -	dotext -	dotext -	dotext -	dotext -	dotext
1	2	27.463,97.725 21.961,174.532	27.463,97.72 5 57.24 1	27.463,97.725 57.24 99.7	27.463,97.725 57.24 98.8	2.751,136.1285 57.24 91M/200%%c/50	21.961,174.532 57.24 96.973
1	Z	21.901,174.332	5 57.24 1	51.24 99.1	37.24 90.0	dotext	57.24 90.975
		PLINE	dotext	dotext	dotext	39.9015,162.9855 -	dotext
		21.961,174.532	21.961,174.5	21.961,174.53	21.961,174.532	32.77	57.842,151.439
2	20	57.842,151.439	32 - 32.77 2	2 - 32.77 99.9	-32.77 96.973	43M/200%%c/50	-32.77 96.12
2	20	57.012,151.155	52 52.112	2 52.11 57.5	32.11 90.915	dotext -	52.11 90.12
		PLINE -	dotext -	dotext -	dotext -	12.5825,79.0325 -	dotext
		30.495,90.561	30.495,90.56	30.495,90.561	30.495,90.561 -	32.77	5.33,67.504 -
3	7	5.33,67.504	1 -32.77 3	-32.77 99.9	32.77 99	43M/200%%c/50	32.77 98.148
		PLINE	dotext	dotext 🔬	dotext	dotext	dotext
		31.674,1.358	31.674,1.358	31.674,1.358	31.674,1.358 90	31.674,35.0105 90	31.674,68.663
4	5	31.674,68.663	90 4	90 100.2	99.3	67M/200%%c/50	90 97.954
		PLINE	dotext	dotext	dotext	dotext	dotext
		31.674,68.663	31.674,68.66	31.674,68.663	31.674,68.663	18.502,68.0835 2.52	5.33,67.504
5	7	5.33,67.504	3 2.52 5	2.52 100.1	2.52 97.954	26M/200%%c/50	2.52 97.427
	_		N. o 📃			dotext	
		PLINE	dotext	dotext	dotext	31.586,109.4715	dotext
_	• •	5.33,67.504	5.33,67.504	5.33,67.504	5.33,67.504	57.97	57.842,151.439
7	20	57.842,151.439	57.977	57.97 100	57.97 97.427	99M/200%%c/50	57.97 95.447
		PLINE	dotext	dotext	dotext	dotext	dotext
9	10	153.162,147.095	153.162,147.	153.162,147.0	153.162,147.09	112.083,147.095 0	71.004,147.095
9	19	71.004,147.095 PLINE	095 0 9	95 0 100.1 dotext	5 0 99.2 dotext	82M/200%%c/50	0 97.557
		155.683,2.063	dotext 155.683,2.06	155.683,2.063	155.683,2.063	dotext 155.683,17.7015 90	dotext 155.683,33.34
10	12	155.683,33.34	3 90 10	90 100.3	90 99.4	31M/200%%c/50	90 98.774
10	12	PLINE	dotext	dotext	dotext	dotext	dotext
		155.683,59.077	155.683,59.0	155.683,59.07	155.683,59.077	155.683,46.2085 90	155.683,33.34
11	12	155.683,33.34	77 90 11	7 90 100.3	90 99.4	26M/200%%c/50	90 98.885
		PLINE	dotext	dotext	dotext	dotext	dotext
		155.683,33.34	155.683,33.3	155.68 <mark>3,3</mark> 3.34	155.683,33.340	135.3735,33.340	115.064,33.34 0
12	15	115.064,33.34	4 0 12	0 100.25	98.774	41M/200%%c/50	97.962
		PLINE	dotext	dotext	dotext	dotext	dotext
		115.064,2.335	115.064,2.33	ALL TROUBLE LAND		115.064,17.8375 90	115.064,33.34
13	15	115.064,33.34	5 90 13	90 100.25	90 99	31M/200%%c/50	90 98.38
		PLINE	dotext	dotext	dotext	dotext	dotext
1.4	15	115.064,58.664	115.064,58.6	115.064,58.66	115.064,58.664	115.064,46.002 90	115.064,33.34
14	15	115.064,33.34 PLINE	64 90 14	4 90 100.25	90 99.35 dotaxt	25M/200%%c/50	90 98.844
		115.064,33.34	dotext 115.064,33.3	dotext 115.064,33.34	dotext 115.064,33.34 0	dotext 93.034,33.34 0	dotext 71.004,33.34 0
15	17	71.004,33.34	4 0 15	0 100.2	97.962	44M/200%%c/50	97.081
15	1/	PLINE	dotext	dotext	dotext	1 TIVI/ 200707000/JU	dotext
		71.004,0.952	71.004,0.952	71.004,0.952	71.004,0.952 90	dotext 71.004,17.146	71.004,33.34 90
16	17	71.004,33.34	90 16	90 100.2	99.3	90 32M/200%%c/50	98.652
-		PLINE	dotext	dotext	dotext	• • • • •	dotext
		71.004,33.34	71.004,33.34	71.004,33.34	71.004,33.34 90	dotext 71.004,50.522	71.004,67.704
17	18	71.004,67.704	90 17	90 100.15	97.081	90 34M/200%%c/100	90 96.737
		PLINE	dotext	dotext	dotext		dotext
		71.004,67.704	71.004,67.70	71.004,67.704	71.004,67.704	dotext 71.004,70.541	71.004,73.378
18	19A	71.004,73.378	4 90 18	90 100.12	90 96.737	90 6M/200% % c/100	90 96.68
						dotext	
		PLINE	dotext	dotext	dotext	64.423,149.267 -	dotext
10	•	71.004,147.095	71.004,147.0	71.004,147.09	71.004,147.095	18.27	57.842,151.439
19	20	57.842,151.439	95 - 18.27 19	5 -18.27 100	-18.27 95.943	14M/200%%c/100	-18.27 95.804
20	01	PLINE	dotext	dotext	dotext	dotext	dotext
20	21	57.842,151.439	57.842,151.4	57.842,151.43	57.842,151.439	64.383,159.537 51.07	70.924,167.635

		70.924,167.635	39 51.07 20	9 51.07 99.95	51.07 95.447	21M/200%%c/100	51.07 95.239
						dotext	
		PLINE	dotext	dotext	dotext	97.7765,167.7475	dotext
		70.924,167.635	70.924,167.6	70.924,167.63	70.924,167.635	0.24	124.629,167.86
21	STP	124.629,167.86	35 0.24 21	5 0.24 100	0.24 95.239	54M/200%%c/100	0.24 94.702
		PLINE	dotext	dotext	dotext	dotext	dotext
		71.004,73.378	71.004,73.37	71.004,73.378	71.004,73.378	71.004,110.2365 90	71.004,147.095
19A	19	71.004,147.095	8 90 19A	90 100	90 96.68	74M/200%%c/100	90 95.943

Copy all the column of the table and paste al the column in command bar in AutoCAD .It will automatically develop the drawing and transfer all the data from MS Excel to AutoCAD. After moving all the superimposed text the drawing will be prepared as shown below

Figure 3AutoCAD drawing developed from MS Excel

VI. RESULTS AND DISCUSSION

In this project, design of sewer line by many routes is one part of work which is done. And another part is develop the drawing and transfers all the technical drawing from MS Excel to AutoCAD. The main objective of this project with the help of coordinate we can easily link MS Excel with AutoCAD and can design the different routes of sewer pipeline and compare all the routes and take decision to opt the most economical and feasible route of sewer pipeline. Another part with the help of coordinate we can easily develop the drawing and transfers all the technical drawing from MS Excel to AutoCAD. It means developing drawing and transferring technical data is now a very easily and accurate task with this method.

REFERENCES

- [1] CPHEEO Manual on Sewer and Sewerage System, Ministry of Urban Development, Government of India, New Delhi.
- [2] Garg, S.K-Sewage disposal and air pollution engineering, Khanna publishers, New Delhi.
- [3] Ilaboya I.R., Atikpo E., Ekoh G.O., Ezugwu M.O. and Umukoro L. (2011), —Application of Dynamic Programming to Solving Reservoir Operational Problems ||, Journal of Applied Technology in Environmental Sanitation, Vol. 1, 251-262.
- [4] João Joanaz de Melo and António S. Câmara (1994), -Models for the optimization of regional wastewater treatment systems ||, European Journal of Operational Research 73 EOR 01727 North-Holland.
- [5] Joaquim Sousa, Alexandra Ribeiro, Maria da Conceicao Cunha and Antonio Antunes(2002), —An optimization approach to wastewater systems planning at regional level || , Journal of Hydroinformatics 2002.
- [6] Md. M. Rashid, P.E.; and Donald F. Hayes, P.E., M.ASCE (2011), -Dynamic Programming Methodology for Prioritizing Sewerage Projects ||, The Journal of Water Resources Planning and Management, Vol. 137, No. 2, March 1, 2011.
- [7] Nagoshe S. R., Rai, R. K., Kadam, K. N (2014), −Optimization Of Sewerage Network By Dynamic Programming ||. Proceedings of 3rd IRF International Conference, Goa, India, ISBN: 978 93 84209 15 5.

[8] Ong, S. and Adams, B. (1990). "Capacity Expansion for Regional Wastewater Systems." J. Environ. Eng., 10.1061/(ASCE)0733-9372(1990)116:3(542), 542-560.

[9] Swamee, P. K. (2001). – Design of sewer line || , Journal of Environmental Engineering, ASCE, Vol. 127, No. 9, 776-781

